325 research outputs found

    Considerations When Sampling Spruce Budworm Egg Masses on Balsam Fir in the Lake States: Low to Extreme Population Levels

    Get PDF
    Nineteen balsam fir trees, Abies balsamea, from five spruce-fir stands in Michigan\u27s Upper Peninsula, were used to study egg mass densities and distributions. Ten were used to study the effects of branch size on mass density estimates. The foliage surface area and the number of new egg masses spruce budworm, Choristoneura fumiferana, were determined for each branch, and the top of each tree and (or) the branch segment of interest. We determined the effects of the bias and the variance of the estimator, of sampling different parts of the tree, and of sampling different size branches. Points that should be considered when estimating spruce budworm egg mass densities on balsam fir were identified. Generally, sampling whole branches from the mid-crown gave the most precise and accurate estimates of tree egg mass density

    Regression Equations and Table for Estimating Numbers of Eggs in Jack Pine Budworm (Lepidoptera: Tortricidae) Egg Masses in Michigan

    Get PDF
    Three simple linear regression equations were developed to estimate the numbers of eggs in jack pine budworm, Choristoneura pinus pinus, egg masses in Michigan. One equation was developed for each of 2-row, 2-row +, and 3-row egg masses. A table of estimated numbers of eggs per egg mass is given for each of the three row types for egg mass lengths from 1 to 25 nun

    Considerations When Sampling Spruce Budworm Egg Masses on Balsam Fir and White Spruce in the Lake States: Low Population Levels

    Get PDF
    One cluster each of balsam fir, Abies balsamea, and white spruce, Picea glauca, trees was chosen from each of five stands of spruce-fir in Michigan\u27s Upper Peninsula. The foliage surface area and the number of new egg masses of the spruce budworm, Choristoneura fumiferana, were determined for each branch and the top of each tree. The effects, in terms of the bias and the variance of the estimator, of sampling in different parts of the tree and with various size branches were determined. Factors that the sampler should consider in developing sampling plans to estimate spruce bud worm egg mass densities in mixed spruce-fir stands were identified. Egg mass density and its per branch variance may be considerably higher in white spruce than in balsam fir. Sampling whole feasible branches at mid-crown yielded, in general, the most precise and accurate estimates of tree egg mass density

    Spruce Budworm Egg Mass Density on Balsam Fir: Low to Extreme Population Levels (Lepidoptera: Tortricidae)

    Get PDF
    A study was initiated in Michigan\u27s Upper Peninsula to develop improved foliage sampling methods for spruce budworm, Choristoneura fumiferana (Clemens), egg masses. Four balsam fir, Abies balsamea, trees were chosen from each of four stands in 1979, and four balsam fir trees were chosen from one stand in 1980. The number of new egg masses, foliage surface area, and crown and quadrant classes of each branch were determined for all trees. Egg mass density for each part of the tree was determined by dividing total number of egg masses by total surfaee area. The 20 trees were divided into five groups with forecasted budworm damage varying from low to extreme. On the average the egg mass density (egg mass/lOOO cm2) of the lower-crown was 58% lower than the egg mass density of the entire tree; the mid-crown had 18% higher cgg mass density than the entire tree, the upper-crown had 63% higher density than the entire tree, and the tree top had 69% higher density than the entire tree. There was no strong trend to the small absolute differences in density among the four quadrants. Sampling at mid-crown may lead to over- or underestimation of tree egg mass density. The seriousness of such errors would depend on the bias and where the sample is taken vertically in the mid-crown

    Spruce Budworm Egg Mass Density on Balsam Fir and White Spruce: Low Population Levels (Lepidoptera: Tortricidae)

    Get PDF
    As part of a study to develop improved foliage sampling methods for spruce budworm, Choristoneura fumiferana (Clemens), egg masses, two balsam fir (four in one stand), Abies balsamea, and two white spruce, Picea glauca, trees were chosen from each of five spruce- fir stands in Michigan\u27s Upper Peninsula in 1980. All stands had very low to low population densities. Each tree was completely enumerated so that the number of new egg masses, foliage surface area, and egg mass density could be determined for the entire tree, three crown classes, four quadrants, and the tree top. Results indicated (1) considerable tree-to- tree and stand-to-stand variation; (2) no meaningful or consistent differences among quad- rants within or between species; (3) the average density in white spruce trees was 3.2 times larger than that in balsam fir trees; (4) the tree-la-tree variation of density in white spruce trees was 8.4 times larger than that in balsam fir trees; (5) densities in the mid-crown, upper-crown, and tree top are considerably higher than that in the lower-crown for both species; the relative differences for balsam fir are about twice that of white spruce; and (6) on the average, density at mid-crown was close to that of the entire tree for balsam fir, but density at mid-crown was 17.9% lower than that of the entire tree for white spruce. These results have important implications to the development of sampling plans for estimating egg mass density in spruce-fir stands

    Regression Equations and Table for Estimating Numbers of Eggs in Jack Pine Budworm (Lepidoptera: Tortricidae) Egg Masses in Michigan

    Get PDF
    Three simple linear regression equations were developed to estimate the numbers of eggs in spruce budworm, Choristoneura fumiferana, egg masses in Michigan. One equation was developed for each of 2-row, 2- row + , and 3-row egg masses. A table of estimated numbers of eggs per egg mass is given for each of the three row types for egg mass lengths from 1 to 13 mm

    Alternatives to the Gypsy Moth Eradication Program in Michigan

    Get PDF
    Responding to questions of what the gypsy moth, Porthetria dispar, would do in Michigan forests, a computer simulation model was constructed. The model consisted of three subunits: a submodel of gypsy moth population dynamics, a submodel of forest growth and a submodel of tree defoliation and mortality. Several different policies were simulated for an 80 year period. The eradication policy now employed in Michigan failed due to survival of small portions of the population. Allowing the gypsy moth to become established in Michigan forests and then responding by spraying when defoliation is visible provided a policy with the least economic and environmental cost

    Biology, Injury, and Control of the European Needle-bending Midge (Diptera: Cecidomyiidae) on Scotch Pine in Michigan

    Get PDF
    Contarinia baeri is univoltine in Michigan. Adults emerge in spring, and females deposit eggs in small clusters in the sheaths of new-growth pine needles. Larvae hatch shortly thereafter and there are three larval instars. Larval feeding causes the needles to at first droop, discolor, and eventually drop, reducing the quality of Christmas trees and occasionally killing shoots. Larvae overwinter on the ground in cocoons, and pupate in spring. Adults were suppressed (\u3e 75% control) with formulations of Pydrin® (fenvalerate) and Tempo® (cyfluthrin) applied within a week after adult emergence

    Michigan\u27s Cooperative Forest Pest Management Program, A Team Approach to Improving Forest Management

    Get PDF
    A forest management team was organized in the late 1970\u27s by cooperative efforts of Michigan\u27s universities. the Michigan Department of Natural Resources, and the USDA Forest Service.The goals were to devise new technologies, transfer available technology, and service and management alternatives to forest land managers in Michigan. The program throughout has emphasized forest management rather than pest management for prevention and control of pests. Dissemination of pest management information has been of importance and new research results have gone directly to land managers for immediate use. The team participates in forest compartmental reviews and helps prescribe management plans for land parcels, thus providing for preventative pest management. Services and management recommendations are provided mostly through forest pest specialists located in the field. They feed back results and problems to researchers and extension specialists of the team for further input. Preventive management information used by by local managers in recent years has nearly paid the cost of the program. Plans are to broaden the team effort by cooperating with organizations and in adjacent states through a computer network system and by other means

    Technology Transfer in Forest Pest Management: A Case History

    Get PDF
    The current approach being used in the spruce budworm technology transfer program for the Lake States is described. During 1981-1982, we concentrated on needs assessment surveys and the development and packaging of materials in five areas: general manual, chemical control handbook, silviculture handbook, instruction manual for remote sensing workshops, and technical reports on budworm impact on spruce-fir stands. We present a list of factors that researchers and technology transfer specialists should consider when plan- ning a research and technology transfer program in forest pest management
    corecore